首页 | 本学科首页   官方微博 | 高级检索  
     


An analysis of the crack tip fields in a ductile three-point bend specimen subjected to impact loading
Authors:Timothy Premack

Andrew S. Douglas

Affiliation:

NASA Goddard Space Flight Center, Code 751, Greenbelt, MD 20771, U.S.A.

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, U.S.A.

Abstract:
Analyses of an impact fracture test of a precracked, three-point beam of HY100 steel were performed to determine the dynamic fracture toughness. During impact, the crack tip opening displacement (CTOD) 100 μm behind the crack tip was measured using an optical measuring device called the interferometric strain/displacement gage. Since fracture initiates when stress wave effects dominate, a numerical simulation of the fracture event was conducted to obtain relevant near crack tip field parameters. The specimen was modeled by a plane stress finite element simulation using a rate sensitive elastoplastic material law. Since the simulated CTOD was to be compared with the measured CTOD in a region of residual strains due to crack closure, this effect was included in the model. The simulation produces a CTOD versus time response within 10% of the observed response, indicating that the other field quantities (such as the J-integral) should also be reliable. The loading rate /.K1 was approximately 8 × 106MPam/sec. If the fracture initiation time is assumed to coincide with the time at which the simulated and observed CTOD curves diverge, then the impact fracture toughness is 56% higher than the static fracture toughness.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号