摘 要: | 为适应摄像头在智慧城市、智能交通、自动驾驶等新兴领域应用部署愈加广泛的需求,视频分析需更高精度、更低延时地响应分析结果。然而,这种高精度的分析同时也带来了巨大的计算资源需求,计算资源受限的摄像头无法胜任分析任务。边缘计算不仅可以解决本地摄像头计算资源问题,还可以显著降低向云端传输视频流数据的时间。本文探讨了利用深度强化学习方法,在边缘节点辅助摄像头集群视频分析任务场景下,根据当前网络系统条件动态决策,卸载部分指定摄像头上的分析任务,以在满足任务响应延时的约束前提下,最大化一段时间内任务分析的精度。仿真结果表明,本文提出的方法在任务的响应延时和准确度方面获得了良好效果。
|