首页 | 本学科首页   官方微博 | 高级检索  
     


Effective factors improving catalyst layers of PEM fuel cell
Authors:Gokce S Avcioglu  Berker Ficicilar  Inci Eroglu
Affiliation:1. Danish Power Systems, DK-3490, Kvistgård, Denmark;2. Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey;3. Department of Chemical Engineering, Ondokuz Mayis University, 55139, Samsun, Turkey
Abstract:Cathode catalyst layer has an important role on water management across the membrane electrode assembly (MEA). Effect of Pt percentage in commercial catalyst and Pt loading from the viewpoint of activity and water management on performance was investigated. Physical and electrochemical characteristics of conventional and hydrophobic catalyst layers were compared. Performance results revealed that power density of conventional catalyst layers (CLs) increased from 0.28 to 0.64 W/cm2 at 0.45 V with the increase in Pt amount in commercial catalyst from 20% to 70% Pt/C for H2/Air feed. In the case of H2/O2 feed, power density of CLs increased from 0.64 to 1.29 W/cm2 at 0.45 V for conventional catalyst layers prepared with Tanaka. Increasing Pt load from 0.4 to 1.2 mg/cm2, improved kinetic activity at low current density region in both feeding conditions. Scattering electron microscopy (SEM) images revealed that thickness of the catalyst layers (CLs) increases by increasing Pt load. Electrochemical impedance spectroscopy (EIS) results revealed that thinner CLs have lower charge transfer resistance than thicker CLs. Inclusion of 30 wt % Polytetrafluoroethylene (PTFE) nanoparticles in catalyst ink enhanced cell performance for the electrodes manufactured with 20% Pt/C at higher current densities. However, in the case of 70% Pt/C, performance enhancement was not observed. Cyclic voltammetry (CV) results revealed that 20% Pt/C had higher (77 m2/g) electrochemical surface area (ESA) than 70% Pt/C (65 m2/g). In terms of hydrophobic powders, ESA of 30PTFE prepared with 70% Pt/C was higher than 30PTFE prepared with 20 %Pt/C. X-Ray Diffractometer (XRD) results showed that diameter of Pt particles of 20% Pt/C was 2.5 nm, whereas, it was 3.5 nm for 70% Pt/C, which confirms CV results. Nitrogen physisorption results revealed that primary pores of hydrophobic catalyst powder prepared with 70% Pt/C was almost filled (99%) with Nafion and PTFE.
Keywords:Proton exchange membrane fuel cell performance  Electrocatalyst  Catalyst layer  Hydrophobicity  Water management
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号