首页 | 本学科首页   官方微博 | 高级检索  
     


A Self-guided Genetic Algorithm for permutation flowshop scheduling problems
Authors:Shih-Hsin Chen  T.C.E. Cheng
Affiliation:a Department of Electronic Commerce Management, Nanhua University, Taiwan, ROC
b Department of Information Management, Yuan-Ze University, Taiwan, ROC
c Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong
d School of Computer Science and Electronic Engineering, University of Essex, UK
Abstract:In this paper we develop a Self-guided Genetic Algorithm (Self-guided GA), which belongs to the category of Estimation of Distribution Algorithms (EDAs). Most EDAs explicitly use the probabilistic model to sample new solutions without using traditional genetic operators. EDAs make good use of the global statistical information collected from previous searches but they do not efficiently use the location information about individual solutions. It is recently realized that global statistical information and location information should complement each other during the evolution process. In view of this, we design the Self-guided GA based on a novel strategy to combine these two kinds of information. The Self-guided GA does not sample new solutions from the probabilistic model. Instead, it estimates the quality of a candidate offspring based on the probabilistic model used in its crossover and mutation operations. In such a way, the mutation and crossover operations are able to generate fitter solutions, thus improving the performance of the algorithm. We tested the proposed algorithm by applying it to deal with the NP-complete flowshop scheduling problem to minimize the makespan. The experimental results show that the Self-guided GA is very promising. We also demonstrate that the Self-guided GA can be easily extended to treat other intractable combinatorial problems.
Keywords:Estimation of Distribution Algorithms   Permutation flowshop scheduling   Self-guided crossover   Self-guided mutation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号