首页 | 本学科首页   官方微博 | 高级检索  
     


Process diagnostics using trace alignment: Opportunities, issues, and challenges
Authors:R.P. Jagadeesh Chandra Bose  Wil M.P. van der Aalst
Affiliation:a Department of Mathematics and Computer Science, University of Technology, Eindhoven, The Netherlands
b Philips Healthcare, Veenpluis 5-6, Best, The Netherlands
Abstract:
Business processes leave trails in a variety of data sources (e.g., audit trails, databases, and transaction logs). Hence, every process instance can be described by a trace, i.e., a sequence of events. Process mining techniques are able to extract knowledge from such traces and provide a welcome extension to the repertoire of business process analysis techniques. Recently, process mining techniques have been adopted in various commercial BPM systems (e.g., BPM|one, Futura Reflect, ARIS PPM, Fujitsu Interstage, Businesscape, Iontas PDF, and QPR PA). Unfortunately, traditional process discovery algorithms have problems dealing with less structured processes. The resulting models are difficult to comprehend or even misleading. Therefore, we propose a new approach based on trace alignment. The goal is to align traces in such a way that event logs can be explored easily. Trace alignment can be used to explore the process in the early stages of analysis and to answer specific questions in later stages of analysis. Hence, it complements existing process mining techniques focusing on discovery and conformance checking. The proposed techniques have been implemented as plugins in the ProM framework. We report the results of trace alignment on one synthetic and two real-life event logs, and show that trace alignment has significant promise in process diagnostic efforts.
Keywords:Diagnostics   Conformance   Alignment   Execution patterns   Process mining
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号