首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类的LS-SVM的入侵检测方法研究
引用本文:程爱辉,高茂庭. 基于聚类的LS-SVM的入侵检测方法研究[J]. 网络安全技术与应用, 2010, 0(5): 14-16
作者姓名:程爱辉  高茂庭
作者单位:上海海事大学信息工程学院,上海,200135
摘    要:本文针对最小二乘法支持向量机在入侵检测中的训练效率低下的缺点,将聚类方法应用其中。该方法主要用来对数据集进行剪枝,有效地减少距离分类面较远的数据集合数量,而使用靠近聚类中心的数据集合作为有效的样本集合,减少样本的训练时间,提高训练效率。实验表明,使用聚类方法提高了最小二乘法支持向量机的训练效率,而且对入侵检测有很好的效果。

关 键 词:聚类  支持向量机  最小二乘法支持向量机  入侵检测

Research of The Intrusion Detection Method Based On Clustering LS-SVM
Cheng Aihui,Gao Maoting. Research of The Intrusion Detection Method Based On Clustering LS-SVM[J]. Net Security Technologies and Application, 2010, 0(5): 14-16
Authors:Cheng Aihui  Gao Maoting
Affiliation:Cheng Aihui,Gao Maoting College of Material Science , Engineering Shanghai Maritime University,Shanghai,200135,China
Abstract:For the shortcomings of training inefficient of Intrusion Detection based on least squares support vector machine, we use clustering. This method can realize data pruning and effectively reduce the amount of data set by using the cluster center set close to the distinguishing boundary, which may reduce the samples of the training time and improve the training efficiency. The experimental result shows that using clustering can improve the efficiency of LS-SVM, and it is effective for intrusion detection
Keywords:Clustering  SVM  LS-SVM  Intrusion Detection  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号