首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于小波包变换与深度学习的超短期光伏功率预测
作者姓名:
刘源延
孔小兵
马乐乐
刘向杰
作者单位:
华北电力大学控制与计算机工程学院,北京 102206
基金项目:
国家重点研发计划(2021YFE0190900);国家自然科学基金(62073136;61833011;62203170);
摘 要:
针对光伏功率序列的复杂多变特征,提出一种基于小波包变换(WPT)的门控循环单元(GRU)光伏功率组合预测方法。首先通过相关性分析挑选重要气象因子,并利用WPT将原始光伏功率序列分解为一组子序列;然后,提出一种基于莱维飞行天牛须搜索算法(LFBAS)的相似日选择方法,以选择相似于预测日的历史日作为输入数据集;最后,建立一组基于GRU网络的深度学习光伏功率预测模型,将每个子序列预测结果叠加得到光伏功率最终预测结果。仿真结果表明,该文所提出的预测方法在预测精度和计算效率方面具有显著优势。
关 键 词:
光伏发电
功率预测
小波包变换
相似日
门控循环单元
天牛须搜索算法
收稿时间:
2023-01-10
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号