首页 | 本学科首页   官方微博 | 高级检索  
     


Globally optimal bounding ellipsoid algorithm for parameter estimation using artificial neural networks
Authors:Xian-Fang Sun  Yue-Zu Fan  Fei-Zhou Zhang
Affiliation:Faculty of Computing, Engineering and Mathematical Sciences , University of the West of England , Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
Abstract:This paper develops a real-time implementation of a globally optimal bounding ellipsoid (GOBE) algorithm for parameter estimation of linear-in-parameter models with unknown but bounded (UBB)errors. A recently proposed recursively optimal bounding ellipsoid (ROBE) algorithm is introduced, and a GOBE algorithm is derived through repeating this ROBE algorithm. An analogue artificial neural network (ANN) is provided to implement the GOBE algorithm in real time. Convergence analyses on the ROBE, the GOBE algorithms, and the analogue ANN implementation of the GOBE algorithm are presented. No persistent excitation condition is required to ensure the convergence. Simulation results show the good performances of these algorithms and the ANN implementation.
Keywords:Nonlinear correlation tests  CCF  MIMO models  Higher order CCF  NARMAX models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号