首页 | 本学科首页   官方微博 | 高级检索  
     

基于代价敏感支持向量机的软件缺陷预测研究
作者姓名:任胜兵  廖湘荡
作者单位:(中南大学软件学院,湖南 长沙 410075)
摘    要:软件缺陷预测是典型的非平衡学习问题。基于CS SVM和聚类算法改进代价敏感支持向量机(SVM)算法,提出了CCS SVM软件缺陷预测模型。在CCS SVM预测模型中,将SVM与类别误分代价结合起来,以非平衡数据评价指标作为目标函数,优化错分代价因子,提升少数类样本的识别率。通过聚类找到每类样本的中心点,根据样本到其中心点的距离定义每个样本的类别置信度,给每个样本分配不同的误分代价系数,并把样本的置信度引入到代价敏感SVM优化问题中,提高算法鲁棒性,提升SVM分类性能。此外,为了提高模型的泛化能力,使用遗传算法优化特征选择和模型参数。通过美国航空航天局NASA MDP数据集实验表明,本文方法的G mean和F measure模型评价值有明显的提升。

关 键 词:软件缺陷预测  代价敏感  支持向量机  非平衡数据分类  参数选择  遗传算法  
收稿时间:2017-11-08
修稿时间:2018-10-25
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号