首页 | 本学科首页   官方微博 | 高级检索  
     

物流配送车辆路径问题的优化研究
引用本文:巩固,胡晓婷,卫开夏,郝国生. 物流配送车辆路径问题的优化研究[J]. 计算机工程与科学, 2011, 33(5): 106. DOI: 10.3969/j.issn.1007-130X.2011.05.021
作者姓名:巩固  胡晓婷  卫开夏  郝国生
作者单位:徐州师范大学计算机科学与技术学院,江苏徐州,221116
基金项目:江苏省高校自然科学基础研究,徐州师范大学项目基金
摘    要:物流中的车辆路径问题(VRP)是目前组合优化领域的研究热点问题,VRP为NP-hard问题。本文在对VRP分析的基础上,建立数学模型,提出了一种适合求解该问题的蚁群遗传融合优化算法。提出的优化算法首先采用蚁群算法在局部阶段产生最好解,然后利用遗传算法的优良基因在全局阶段对优化解进一步优化,以获取最好路径解。实验结果表明,提出的融合算法能高效解决VRP问题,且优化效果比单算法好。

关 键 词:车辆路径问题  融合优化算法  蚁群算法  遗传算法  路径优化

Optimized Performance Research of the Vehicle Routing Problem in Industry Logistics
GONG Gu,HU Xiao-ting,WEI Kai-xia,HAO Guo-sheng. Optimized Performance Research of the Vehicle Routing Problem in Industry Logistics[J]. Computer Engineering & Science, 2011, 33(5): 106. DOI: 10.3969/j.issn.1007-130X.2011.05.021
Authors:GONG Gu  HU Xiao-ting  WEI Kai-xia  HAO Guo-sheng
Abstract:The logistics distribution VRP,which is a typical NP-hard problem,is a hot topic in the combinatorial optimization field at present.Based on the analysis about VRP,a mathematical model is built.Aiming at solving the vehicle routing problem,the paper puts forward a combinatorial optimization algorithm of ant colony and genetics in order to gain optimization.The combinatorial optimization algorithm adopts the ant colony algorithm to gain local optimization solution,and then makes use of the genetic algorithm which reserves some elitist genetic sense units that can steadily pass down to the son generation to optimize the local optimization solution for gaining a global optimization solution.The experimental results show that the combination optimization algorithm is efficient in solving VRP,and the optimization efficiency of the improved algorithm is superior to that of a single algorithm such as the ant colony algorithm or the genetic algorithm.
Keywords:vehicle routing problem  combination optimization algorithm  ant colony algorithm  genetic algorithm  route optimization
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号