Mechanical Stabilization of Cemented Soil–Fly Ash Mixtures with Recycled Plastic Strips |
| |
Authors: | Khaled Sobhan Mehedy Mashnad |
| |
Affiliation: | 1Assistant Professor, Dept. of Civil Engineering, Florida Atlantic Univ., 777 Glades Rd., Boca Raton, FL 33431. 2Graduate Student, Civil and Environmental Engineering, Univ. of Illinois at Urbana Champaign, Champaign, IL 61801.
|
| |
Abstract: | An experimental investigation was undertaken to evaluate the mechanical behavior of a soil–cement–fly ash composite, reinforced with recycled plastic strips (high-density polyethylene) that were obtained from postconsumer milk and water containers. The primary motivation for the study was to investigate the innovative reuse of several candidate waste materials in geotechnical and pavement applications. The specific objectives of the research were: (1) to evaluate the compressive, split tensile, and flexural strength characteristics of the material, and (2) to determine the effectiveness of recycled plastic strips in enhancing the toughness characteristics of the composite. Since cement-stabilized materials are weak in tension, the main focus of the experimental program was to conduct a series of specially instrumented split tensile and flexural tests on mixes containing various amounts of cement, fly ash, and plastic strips. For a meaningful comparison of test results, all specimens were prepared at a constant dry density. The standard ASTM C496 procedure for split tensile test was slightly modified by attaching two horizontal linear variable differential transformers (LVDTs) to measure the diametral deformation of the specimen due to compressive loading in an orthogonal direction. This modification enabled the evaluation of the postpeak toughness behavior of the composite. For some specimens, a strain gauge was attached to the middle of the face perpendicular to the loading plane in order to correlate the results with the one found using the LVDTs. All tests were performed with a 90 kN universal testing machine with deformation control. Experimental data show that the soil–cement matrix stabilized with 4% to 10% by weight of fly ash and reinforced with 0.25% to 0.5% (by weight) plastic strips (having lengths of 19 mm or 38 mm) can achieve a maximum compressive strength of 7000 kPa, a split tensile strength of 1000 kPa, and a flexural strength of 1200 kPa. These ranges in strength values are suitable for a high-quality stabilized base course for a highway pavement. To quantify the reinforcing effects in the postpeak region, a dimensionless toughness index is proposed. It is found that the use of fiber reinforcement significantly increases the postpeak load carrying capacity of the mix and thus the fracture energy. It is concluded that the lean cementitious mix containing recycled materials offer a lot of promise as an alternative material for civil engineering construction. |
| |
Keywords: | Stabilization Fly ash Recycling Mixtures Mechanical properties |
|
|