首页 | 本学科首页   官方微博 | 高级检索  
     

控制熔体浓度三维稳定态方程的精确解
引用本文:廖福成, 祖翠娥, 郑连存, 王自东, 李为东. 控制熔体浓度三维稳定态方程的精确解[J]. 工程科学学报, 2004, 26(1): 53-55. DOI: 10.13374/j.issn1001-053x.2004.01.015
作者姓名:廖福成  祖翠娥  郑连存  王自东  李为东
作者单位:北京科技大学应用科学学院,北京,100083;北京科技大学材料学院,北京,100083
基金项目:国家重点基础研究发展计划(973计划);北京市科技新星计划
摘    要:研究了一类关于浓度的三维稳态晶体生长控制方程.这类问题由于带有远场条件,无法按常规方法给出其解析解或数值解.在复数域内利用分离变量法,得到了这类方程的级数形式的解析解,而最后的解是实数形式.结果表明,固液界面前沿浓度是指数震荡衰减的.

关 键 词:晶体生长  分离变量法  偏微分方程  Fourier级数
收稿时间:2003-03-28

Analytical Solution of Governing Equations for Three-dimension Steady State Crystal Growth
LIAO Fucheng, ZU Cuie, ZHENG Liancun, WANG Zidong, LI Weidong. Analytical Solution of Governing Equations for Three-dimension Steady State Crystal Growth[J]. Chinese Journal of Engineering, 2004, 26(1): 53-55. DOI: 10.13374/j.issn1001-053x.2004.01.015
Authors:LIAO Fucheng  ZU Cuie  ZHENG Liancun  WANG Zidong  LI Weidong
Abstract:A class of partial differential equations (PDE) which describe three-dimension steady state crystal growth for concentration were studied. Because there exists far-field condition, their exact solution or numerical solution can not be derived based on known results about PDE. By using variables separation in the complex number field, the real analytical solution in the form of Fourier series was obtained. The result shows that the concentration in the solid-liquid interface is exponentially damped oscillation.
Keywords:crystal growth  detached variable method  partial differential equation  Fourier series
本文献已被 万方数据 等数据库收录!
点击此处可从《工程科学学报》浏览原始摘要信息
点击此处可从《工程科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号