The combinational complexity of equivalence |
| |
Authors: | C.P. Schnorr |
| |
Affiliation: | Fachbereich Mathematik, Universität Frankfurt, Frankfurt, German Federal Republic |
| |
Abstract: | Consider the Boolean functions and and the equivalence Eq(n)=and (n)∨nor(n). Let L (F) be the smallest number of arbitrary binary Boolean operations that are used in any Boolean computation for F. We prove L(Eq(n))=2n ?3, L (and(n), nor(n))=2n?2. There exist many structurally different optimal computations for Eq (n). |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|