首页 | 本学科首页   官方微博 | 高级检索  
     

基于地理偏好排序的兴趣点混合推荐模型
作者姓名:彭诗杰  陈红梅  王丽珍  肖清
作者单位:云南大学 信息学院,昆明 650500
基金项目:国家自然科学基金资助项目(62266050,62276227);;云南省中青年学术和技术带头人后备人才项目(202205AC160033);
摘    要:随着基于位置的社交网络(LBSN)迅速发展,作为缓解信息过载的有效手段,兴趣点(POI)推荐备受关注.由于用户签到数据是隐式反馈数据,且十分稀疏,为了有效地从用户签到数据中捕获用户POI偏好,提出了一个基于地理偏好排序的POI混合推荐模型.首先,考虑用户签到数据的隐式反馈特性及用户活动的空间约束,利用传统贝叶斯个性化排序(BPR)模型计算POI距离对POI排序的影响,提出加权BPR(GWBPR)模型;然后,针对用户签到数据的稀疏性,融合GWBPR模型和逻辑矩阵分解(LMF)模型,提出混合模型GWBPR-LMF.在两个真实数据集Foursquare和Gowalla上的实验结果表明,GWBPR-LMF模型的性能优于BPR、LMF、SAE-NAD(Self-Attentive Encoder and Neighbor-Aware Decoder)等对比模型.与较优的对比模型SAE-NAD相比,GWBPR-LMF模型的POI推荐的精确率、召回率、F1值、平均精度均值(mAP)、归一化折损累积增益(NDCG)在数据集Foursquare上分别平均提升了44.9%、57.1%、78.4%、55.3%和40.0%,在数据集Gowalla上分别平均提升了3.0%、6.4%、4.6%、11.7%和4.2%.

关 键 词:基于位置的社交网络  兴趣点推荐  隐式反馈  兴趣点排序  加权贝叶斯个性化排序
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号