首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure and Creep Deformation of Sn-Ag-Cu-Bi/Cu Solder Joints
Authors:Min He  Sylvester N Ekpenuma  Viola L Acoff
Affiliation:(1) Department of Metallurgical and Materials Engineering, The University of Alabama, P.O. Box 870202, Tuscaloosa, AL 35487-0202, USA;(2) School of Natural Sciences and Mathematics, Claflin University, Orangeburg, SC 29115, USA
Abstract:Sn-Ag-Cu solder is one of the candidate alternatives to Sn-Pb-based solders. In order to improve its performance, different materials have been added to Sn-Ag-Cu-based solders. Several studies on Sn-Ag-Cu-based solders with Bi additions have shown Sn-Ag-Cu-Bi to be a class of solders with good wetting behavior and good performance that show great promise for use in the electronics assembly and packaging industry. To investigate the mechanical reliability of the Sn-Ag-Cu-Bi solders further, single-lap shear creep characteristics have been studied in this work. Dog-bone-type solder joint specimens were formed using five types of solder alloys, Sn-3.0Ag-0.5Cu and Sn-3.0 Ag-0.5Cu-xBi (x = 1 wt.% to 4 wt.%) with Cu substrates, and creep tests were performed at temperatures of 120°C and 150°C under stresses of 5 MPa to 10 MPa. Results indicate that the rupture times for Sn-3.0Ag-0.5Cu-xBi solder joints up to 4 wt.% of Bi are longer than the rupture time for Sn-3.0Ag-0.5Cu. Stress exponents ranged from 3 to 7 for temperatures of 150°C and 120°C with stresses under 10 MPa. Microstructural analyses using scanning electron microscopy (SEM) were performed and related to the creep behavior of the solder joints.
Keywords:Lead-free solders  shear  creep  Sn-Ag-Cu-Bi alloys  microstructure
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号