首页 | 本学科首页   官方微博 | 高级检索  
     


Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use
Authors:Fateme Heydari  Bahram Saghafian  Majid Delavar
Affiliation:1.Department of Water Resources Engineering,Tarbiat Modares University,Tehran,Iran;2.Technical and Engineering Department, Science and Research Branch,Islamic Azad University,Tehran,Iran
Abstract:Many water resources optimization problems involve conflicting objectives which the main goal is to find a set of optimal solutions on, or near to, Pareto front. In this study a multi-objective water allocation model was developed for optimization of conjunctive use of surface water and groundwater resources to achieve sustainable supply of agricultural water. Here, the water resource allocation model is based on simulation-optimization (SO) modeling approach. Two surrogate models, namely an Artificial Neural Network model for groundwater level simulation and a Genetic Programming model for TDS concentration prediction were coupled with NSGA-II. The objective functions involved: 1) minimizing water shortage relative to the water demand, 2) minimizing the drawdown of groundwater level, and 3) minimizing the groundwater quality changes. According to the MSE and R2 criteria, the results showed that the surrogate models for prediction of groundwater level and TDS concentration performed favorably in comparison to the measured values at the number of observation wells. In Najaf Abad plain case study, the average drawdown was limited to 0.18 m and the average TDS concentration also decreased from 1257 mg/lit to 1229 mg/lit under optimal conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号