首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯过程回归和粒子滤波的短期风速预测
引用本文:梁智,孙国强,俞娜燕,倪晓宇,沈海平,卫志农. 基于高斯过程回归和粒子滤波的短期风速预测[J]. 太阳能学报, 2020, 0(3): 45-51
作者姓名:梁智  孙国强  俞娜燕  倪晓宇  沈海平  卫志农
作者单位:河海大学能源与电气学院;国网江苏省电力公司无锡供电公司;无锡扬晟科技股份有限公司
摘    要:
建立高斯过程回归和粒子滤波相结合的短期风速预测模型,实现对历史风速序列异常值的在线动态检测与修正。首先,在训练样本集中通过高斯过程回归建立状态空间方程,采用粒子滤波算法对当前量测值进行状态估计,对估计值和量测值的残差进行分析,并根据"3σ"原则判断异常值。其次,修正异常值,并对修正后的风速序列重新建立高斯过程回归预测模型。在进行提前15分钟风速预测时,同样采用粒子滤波算法对最新量测值进行状态估计,实现了异常值在线检测并修正。算例分析结果表明,粒子滤波算法能够有效检测出异常风速值,降低了风速预测误差,提前15分钟风速预测时平均绝对百分比误差和均方根误差分别降至8.92%和0.5826 m/s。

关 键 词:高斯过程回归  粒子滤波  异常值检测与修正  短期风速预测

SHORT-TERM WIND SPEED FORECASTING BASED ON GAUSSIAN PROCESS REGRESSION AND PARTICLE FILTER
Liang Zhi,Sun Guoqiang,Yu Nayan,Ni Xiaoyu,Shen Haiping,Wei Zhinong. SHORT-TERM WIND SPEED FORECASTING BASED ON GAUSSIAN PROCESS REGRESSION AND PARTICLE FILTER[J]. Acta Energiae Solaris Sinica, 2020, 0(3): 45-51
Authors:Liang Zhi  Sun Guoqiang  Yu Nayan  Ni Xiaoyu  Shen Haiping  Wei Zhinong
Affiliation:(College of Energy and Electrical Engineering,Hohai University,Nanjing 210098,China;State Grid Jiangsu Electric Power Company Wuxi Power Supply Company,Wuxi 214000,China;Wuxi Yang Sheng Technology Co.,Ltd.,Wuxi 214106,China)
Abstract:
Improving the wind speed prediction accuracy of wind farm will help enhance the power grid stability and economy. Noise or data loss often appears in historical wind speed sequences. These abnormal values will lead to inaccurate estimation of model parameters. Therefore,the affecting the prediction accuracy. Therefore,the detection and correction of abnormal value is the prerequisite and necessary measure to effectively analyze the law of wind speed. In this paper,a shortterm wind speed forecasting model combining Gaussian process regression and particle filter is established,which realizes online dynamic detection and correction of outliers. Firstly,the state space equation is established by the Gaussian process regression in the training sample set. The particle filter algorithm is then used to estimate the current measurement value.The residuals between the estimated and measured values are analyzed and the anomalous values are detected according to the principle of" 3σ ". Secondly,after the anomaly being corrected,the Gaussian process regression forecasting model is reconstructed. The particle filter algorithm is repeatedly used to estimate the latest measurement value during the process of15 mins ahead wind speed forecasting,realizing the online dynamic detection and correction of outliers. The case study show that the particle filter algorithm can effectively detect the abnormal values and reduce the wind speed prediction error,the average absolute percentage error and root mean square error are reduced to 8.92% and 0.5826 m/s respectively when the wind speed is predicted 15 minutes ahead.
Keywords:Gaussian process regression  particle filter  detection and correction of outliers  short-term wind speed forecasting
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号