首页 | 本学科首页   官方微博 | 高级检索  
     


Carbon Nanolights in Piezopolymers are Self‐Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting
Authors:Xuebing He  Chuanfeng Wang  Xi Huang  Long Jin  Xiang Chu  Meilin Xie  Yiwen Nie  Yali Xu  Zhou Peng  Chaoliang Zhang  Jun Lu  Weiqing Yang
Abstract:Herein, an all‐solid‐state sequential self‐organization and self‐assembly process is reported for the in situ construction of a color tunable luminous inorganic/polymer hybrid with high direct piezoresponse. The primary inorganic self‐organization in solid polymer and the subsequent polymer self‐assembly are achieved at high pressure with the first utilization of piezo‐copolymer (PVDF‐TrFE) as the host matrix of guest carbon quantum dots (CQDs). This process induces the spontaneous formation of a highly ordered, microscale, polygonal, and hierarchically structured CQDs/PVDF‐TrFE hybrid with multicolor photoluminescence, consisting of very thermodynamic stable polar crystalline nanowire arrays. The electrical polarization‐free CQDs/PVDF‐TrFE hybrids can efficiently harvest the environmental available kinetic mechanical energy with a new large‐scale group‐cooperation mechanism. The open‐circuit voltage and short‐circuit current outputs reach up to 29.6 V cm?2 and 550 nA cm?2, respectively. The CQDs/PVDF‐TrFE–based hybrid nanogenerator demonstrates drastically improved durable and reliable features during the real‐time demonstration of powering commercial light emitting diodes. No attenuation/fluctuation of the electrical signals is observed for ≈10 000 continuous working cycles. This study may offer a new design concept for progressively but spontaneously constructing novel multiple self‐adaptive complex inorganic/polymer hybrids that promise applications in the next generation of self‐powered autonomous optoelectronic devices.
Keywords:electro‐optical materials  photoluminescence  quantum dots  self‐organization  self‐powered nanosystems
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号