首页 | 本学科首页   官方微博 | 高级检索  
     


Elucidation of Active Sites on S,N Codoped Carbon Cubes Embedding Co–Fe Carbides toward Reversible Oxygen Conversion in High‐Performance Zinc–Air Batteries
Authors:Yuebin Lian  Kefei Shi  Haojing Yang  Hao Sun  Pengwei Qi  Jing Ye  Wenbin Wu  Zhao Deng  Yang Peng
Abstract:The development of high‐performance but low‐cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal–air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co–Fe carbides by pyrolyzing the Co–Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal–sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2. Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co–Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn–air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.
Keywords:electrocatalysts  metal carbides  metal–  organic frameworks  oxygen evolution reaction  oxygen reduction reaction  Zn–  air batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号