首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of deep drawing concept of multi-point forming process in terms of prevalent defects
Authors:Behrooz Zareh-Desari  Behnam Davoodi  Ali Vedaei-Sabegh
Affiliation:1.Department of Manufacturing Engineering, Faculty of Mechanical Engineering,University of Tabriz,Tabriz,Iran;2.School of Mechanical Engineering,Iran University of Science and Technology,Tehran,Iran
Abstract:Multi-point forming is a novel flexible process that is economically suitable for both rapid prototyping and batch production of sheet metal parts. This technique is established based on altering rigid dies by matrices of adjustable punch elements. In this paper, the basic principle of this technique is implemented on deep drawing process. A reconfigurable die was constructed to investigate the multi-point deep drawing process. AA 2024-O Aluminum alloy was designated as test material. The formed specimens were evaluated in terms of dimpling defect, rupture, thickness distribution and dimensional accuracy. The onset of rupture was predicted by integrating the forming limit diagram of employed material with finite element Code. The predicted results were in a reasonable agreement with the experimental tests. It was found that for complete elimination of dimpling defect and acquiring maximum drawing depth, the proper allocation of elastic layer parameters such as thickness and hardness was crucial. The conducted investigations indicated that, in general, dimensional accuracy of formed parts was acceptable. However, for areas with sharp changes in geometry such as corners and side walls, deviation from desired geometry was evident. This phenomenon was remarkably dominant for manufactured parts utilizing softer elastic layer.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号