首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive backstepping control using recurrent neural network forlinear induction motor drive
Authors:Faa-Jeng Lin Rong-Jong Wai Wen-Der Chou Shu-Peng Hsu
Affiliation:Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien;
Abstract:
An adaptive backstepping control system using a recurrent neural network (RNN) is proposed to control the mover position of a linear induction motor (LIM) drive to compensate the uncertainties including the friction force in this paper. First, the dynamic model of an indirect field-oriented LIM drive is derived. Then, a backstepping approach is proposed to compensate the uncertainties including the friction force occurred in the motion control system. With the proposed backstepping control system, the mover position of the LIM drive possesses the advantages of good transient control performance and robustness to uncertainties for the tracking of periodic reference trajectories. Moreover, to further increase the robustness of the LIM drive, an RNN uncertainty observer is proposed to estimate the required lumped uncertainty in the backstepping control system. In addition, an online parameter training methodology, which is derived using the gradient-descent method, is proposed to increase the learning capability of the RNN. The effectiveness of the proposed control scheme is verified by both the simulated and experimental results
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号