首页 | 本学科首页   官方微博 | 高级检索  
     

深度学习在交通拥堵检测中的应用
引用本文:魏泽发,张鲁,解通. 深度学习在交通拥堵检测中的应用[J]. 软件, 2021, 42(1): 132-134
作者姓名:魏泽发  张鲁  解通
作者单位:长安大学,陕西西安 710000
摘    要:随着全球汽车保有量的不断增加,人们在出行中遇到的交通拥堵问题日益严重,这对相关部门的管理效率提出较高要求。本文通过阐述深度学习领域中图像分类技术和目标检测技术的原理以及他们各自在交通拥堵检测中的应用,为相关部门在解决交通拥堵这一实际问题时提供应对方法,具有一定的参考价值。

关 键 词:深度学习  交通拥堵  图像分类  目标检测

Application of Deep Learning in Traffic Congestion Detection
WEI Zefa,ZHANG Lu,XIE Tong. Application of Deep Learning in Traffic Congestion Detection[J]. Software, 2021, 42(1): 132-134
Authors:WEI Zefa  ZHANG Lu  XIE Tong
Affiliation:(Chang'an University,Xi'an ShaanXi 710000)
Abstract:With the continuous increase of the global car ownership,traffic congestion has become more and more serious.The situation puts forward higher requirements for the management efficiency of relevant departments.This paper expounds the principles of image classification and target detection technology in the field of deep learning,and states their respective applications in traffic congestion detection.It has a certain reference value for the relevant departments in solving the practical problem of traffic congestion.
Keywords:deep learning  traffice congestion  image classification  traget detection
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号