首页 | 本学科首页   官方微博 | 高级检索  
     

基于Kinect骨骼数据的手势识别
引用本文:任重庚,沈捷,王莉,蔡鑫. 基于Kinect骨骼数据的手势识别[J]. 计算机工程与设计, 2019, 40(5): 1440-1444,1450
作者姓名:任重庚  沈捷  王莉  蔡鑫
作者单位:南京工业大学电气工程与控制科学学院,江苏南京,211816;南京工业大学电气工程与控制科学学院,江苏南京,211816;南京工业大学电气工程与控制科学学院,江苏南京,211816;南京工业大学电气工程与控制科学学院,江苏南京,211816
基金项目:国家自然科学基金;江苏省自然科学基金;江苏省研究生科研与实践创新计划基金项目
摘    要:
为提高手势识别系统的识别率和识别效率,提出基于Kinect骨骼数据的手势识别方法。在获取的关节坐标的基础上,统计各关节在空间3个维度上的变化量并表示为相应的权值,在动态时间规整(DTW)算法中进行特征加权,提高算法识别率和鲁棒性。在进行匹配前使用模板选择方法从数据库选取与待测手势最为相近的模板,减少用于DTW匹配的模板数量,缩短样本识别时间。实验结果表明,所提方法具有较高的识别率和识别效率。

关 键 词:手势识别  KINECT  骨架模型  模板选择  动态时间规整

Gesture recognition based on Kinect skeleton data
REN Chong-geng,SHEN Jie,WANG Li,CAI Xin. Gesture recognition based on Kinect skeleton data[J]. Computer Engineering and Design, 2019, 40(5): 1440-1444,1450
Authors:REN Chong-geng  SHEN Jie  WANG Li  CAI Xin
Affiliation:(College of Electrical Engineering and Control Science,Nanjing Tech University,Nanjing 211816,China)
Abstract:
To improve the accuracy and efficiency of gesture recognition system,a gesture recognition method based on Kinect skeleton data was proposed.On the basis of the obtained joint coordinates,the variation of each joint in three dimensions of space was calculated and expressed as the corresponding weight,feature weighting method was performed in dynamic time warping (DTW) to improve the accuracy and robustness of algorithm.A template selection method was used to select templates from dataset,which reduced the number of templates used for the DTW and shortened the sample identification time.Experimental results show that the proposed method has high recognition accuracy and efficiency.
Keywords:gesture recognition  Kinect  skeleton model  template selection  dynamic time warping
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号