基于模糊C均值算法的类合并聚类算法研究 |
| |
作者姓名: | 张玉芳 罗俊玮 熊忠阳 |
| |
作者单位: | 重庆大学计算机学院,重庆,400044;重庆大学计算机学院,重庆,400044;重庆大学计算机学院,重庆,400044 |
| |
基金项目: | 中国博士后科学基金,重庆市科委自然科学基金计划资助项目CSTC |
| |
摘 要: | 针对FCM(Fuzzy C-Means)算法对于初始聚类中心敏感,并只适合于发现球状类型簇的缺陷,提出采用冗余聚类中心初始化的方法降低算法对初始聚类中心的依赖,并先暂时将大簇或者延伸形状的簇分割成用多个小类表示,再利用隶属度矩阵提供的信息合并相邻的小类为大类,对FCM算法进行改进。实验结果显示改进的FCM算法能够在一定程度上识别不规则的簇,并减小FCM算法对初始聚类中心的依赖。
|
关 键 词: | 模糊聚类 模糊C均值算法 隶属度矩阵 |
收稿时间: | 2008-10-17 |
修稿时间: | 2009-1-4
|
本文献已被 CNKI 维普 万方数据 等数据库收录! |
| 点击此处可从《计算机工程与应用》浏览原始摘要信息 |
|
点击此处可从《计算机工程与应用》下载全文 |
|