首页 | 本学科首页   官方微博 | 高级检索  
     


Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-Cr2O3 hetero-nanostructures
Authors:Woo Hyung-Sik  Na Chan Woong  Kim Il-Doo  Lee Jong-Heun
Affiliation:Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
Abstract:Highly selective and sensitive detection of trimethylamine (TMA) was achieved by the decoration of discrete p-type Cr(2)O(3) nanoparticles on n-type ZnO nanowire (NW) networks. Semielliptical Cr(2)O(3) nanoparticles with lateral widths of 3-8 nm were deposited on ZnO NWs by the thermal evaporation of CrCl(2) at 630 °C, while a continuous Cr(2)O(3) shell layer with a thickness of 30-40 nm was uniformly coated on ZnO NWs at 670 °C. The response (R(a)/R(g): R(a), resistance in air; R(g), resistance in gas) to 5 ppm TMA of Cr(2)O(3)-decorated ZnO NWs was 17.8 at 400 °C, which was 2.4 times higher than that to 5 ppm C(2)H(5)OH and 4.3-8.4 times higher than those to 5 ppm p-xylene, NH(3), benzene, C(3)H(8), toluene, CO, and H(2). In contrast, both pristine ZnO and ZnO (core)-Cr(2)O(3) (shell) nanocables (NCs) showed comparable responses to the different gases. The highly selective and sensitive detection of TMA that was achieved by the deposition of semielliptical Cr(2)O(3) nanoparticles on ZnO NW networks was explained by the catalytic effect of Cr(2)O(3) and the extension of the electron depletion layer via the formation of p-n junctions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号