首页 | 本学科首页   官方微博 | 高级检索  
     

基于CBR和ANN的精纺纱智能化加工研究与实践
引用本文:殷祥刚,吕志军,于伟东. 基于CBR和ANN的精纺纱智能化加工研究与实践[J]. 毛纺科技, 2006, 0(5): 5-8
作者姓名:殷祥刚  吕志军  于伟东
作者单位:1. 东华大学纺织学院,上海,200051
2. 东华大学机械学院,上海,200051
摘    要:基于事例的推理(CBR)和人工神经网络(ANN)技术,建立了精毛纺纱线质量智能预报加工模型.通过CBR,根据所加工产品的主要特征,能够从历史数据库中快速提取出与设计特征参数最为相似的案例,相似性高的案例排在检索案例前面.利用ANN预报模型对所调整方案的效果进行评价,一方面可以通过调整相应的加工工艺参数及产品质量指标,预测所加工纱线的质量指标,并与实际要求比较,确定最终的加工参数;另一方面,根据所要加工纱线的质量要求,反演所需毛条的相关质量指标,以便企业能够用较低的原料成本生产同样质量的纱线.

关 键 词:智能预报模型  纱线质量  毛条指标
文章编号:1003-1456(2006)05-0005-04
收稿时间:2005-08-07
修稿时间:2005-08-07

Research and application of worsted yarn intelligent manufacturing based on CBR and ANN
YIN Xiang-gang,L Zhi-jun,YU Wei-dong. Research and application of worsted yarn intelligent manufacturing based on CBR and ANN[J]. Wool Textile Journal, 2006, 0(5): 5-8
Authors:YIN Xiang-gang  L Zhi-jun  YU Wei-dong
Affiliation:1. Textile College of Donghua University, Shanghai 200051, China; 2. Machanieal College of Donghua University, Shanghai 200051, China
Abstract:In this paper, the intelligent prediction model for worsted yarn manufacturing is huilt and researched using CBR and ANN. Through CBR, the most similar cases with the main design characteristics of the product required can be rapidly retrieved from past and vast eases,which are sequenced according to the value of the similarity degree. Then ANN model is used to compare and assess the predicted results after adjusting the corresponding process parameters, and the process technics can be optimized. On the other hand, the properties of wool top are also deducted using the prediction model through the characteristics of yarn required, which benefits to reducing the cost for the mill.
Keywords:CBR  ANN
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号