首页 | 本学科首页   官方微博 | 高级检索  
     


Using Disruptive Selection to Maintain Diversity in Genetic Algorithms
Authors:Ting Kuo  Shu-Yuen Hwang
Affiliation:(1) Department of International Trade, Takming Junior College of Commerce, Institute of Computer Science and Information Engineering, National Chiao Tung University, Taiwan
Abstract:Genetic algorithms are a class of adaptive search techniques based on the principles of population genetics. The metaphor underlying genetic algorithms is that of natural evolution. With their great robustness, genetic algorithms have proven to be a promising technique for many optimization, design, control, and machine learning applications. A novel selection method, disruptive selection, has been proposed. This method adopts a nonmonotonic fitness function that is quite different from conventional monotonic fitness functions. Unlike conventional selection methods, this method favors both superior and inferior individuals. Since genetic algorithms allocate exponentially increasing numbers of trials to the observed better parts of the search space, it is difficult to maintain diversity in genetic algorithms. We show that Disruptive Genetic Algorithms (DGAs) effectively alleviate this problem by first demonstrating that DGAs can be used to solve a nonstationary search problem, where the goal is to track time-varying optima. Conventional Genetic Algorithms (CGAs) using proportional selection fare poorly on nonstationary search problems because of their lack of population diversity after convergence. Experimental results show that DGAs immediately track the optimum after the change of environment. We then describe a spike function that causes CGAs to miss the optimum. Experimental results show that DGAs outperform CGAs in resolving a spike function.
Keywords:genetic algorithm  disruptive selection  diversity  nonstationary search problem  spike function
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号