首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法和粒子群优化算法的电力系统无功优化
作者单位:南京工业大学自动化学院 江苏南京210009
摘    要:
从数学的角度分析,电力系统无功优化是一个多变量、多约束、非连续性的混合非线性规划问题,因此,优化过程十分复杂.以减少有功网损为目标函数建立电力系统无功优化计算的数学模型,基于遗传算法和粒子群优化算法,提出一种新颖的混合策略来求解无功优化问题.IEEE 6和IEEE 14节点系统的仿真计算结果表明:与单一的遗传算法或粒子群优化算法相比,该混合策略在优化效果方面具有明显的优势.

关 键 词:电力系统  无功优化  遗传算法  粒子群优化算法

Reactive power optimization of power system based on genetic algorithm and particle swarm optimization algorithm
YANG Hong,LU Jin-gui. Reactive power optimization of power system based on genetic algorithm and particle swarm optimization algorithm[J]. Ceramics Science & Art, 2007, 0(5)
Authors:YANG Hong  LU Jin-gui
Abstract:
From the view of mathematics,reactive power optimization problems are large-scale nonlinear non-continuous optimization problems with a large number of variables,constraints,and uncertain parameters,so the optimization becomes very complex.Reducing active power loss on grid was considered as the main object function to establish reactive power optimization mathematic model.By integrating genetic algorithm(GA) with particle swarm optimization algorithm(PSO),a hybrid strategy for the optimal reactive power flow(ORPF) problem was proposed.Numerical simulations on the IEEE 6 and IEEE 14 test systems illustrated that the proposed hybrid strategy is more effective than either of the algorithnis mentioned above.
Keywords:powersystem  reactive power optimization  genetic algorithm  particle swarm optimization algorithm
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号