首页 | 本学科首页   官方微博 | 高级检索  
     

三维循环密集卷积神经网络在视频手势识别的应用
引用本文:马乾力,魏伟航,赵锦成,高治良. 三维循环密集卷积神经网络在视频手势识别的应用[J]. 软件, 2019, 0(6): 109-112
作者姓名:马乾力  魏伟航  赵锦成  高治良
作者单位:1.深圳微纳集成电路与软件应用研究院
基金项目:深圳市科技创新委员会基础研究(学科布局)项目(基20160123)支持
摘    要:手势识别是当前计算机视觉的一个重要研究课题,由于手势旋转,角度等因素的影响,视频手势识别仍是一项具有挑战性的任务。该文提出了一种基于三维密集卷积神经网络和门限循环单元的双通道手势识别算法,通过三维密集卷积神经网络获取手势的空间信息,使用门限循环单元学习视频中手势的时序信息,最后融合RGB图像和深度图像的深度学习模型特征以此对手势进行识别。在ISOGD数据集上的实验表明,该手势识别算法能够有效提高了视频手势识别的准确率。

关 键 词:手势识别  三维密集卷积神经网络  门限循环单元

Application of 3-D Recurrent Dense CNN in Vedio Gesture Recognition
MA Qian-li,WEI Wei-hang,ZHAO Jin-cheng,GAO Zhi-liang. Application of 3-D Recurrent Dense CNN in Vedio Gesture Recognition[J]. Software, 2019, 0(6): 109-112
Authors:MA Qian-li  WEI Wei-hang  ZHAO Jin-cheng  GAO Zhi-liang
Affiliation:(Shen Zhen Micro & Nano Research Institute of IC and System Applications, ShenZhen, China, 518071)
Abstract:Recent vedio gesture recognition is an important research topic in computer vision,which is an still a challenging task due to the influence of gesture rotation, angle and other factors. In this paper, a two-channel gesture recognition algorithm based on 3-D dense convolution neural network and threshold cycle module is proposed. We acquire the spatial information of gesture by 3-D dense convolution neural network,get the temporal information of gesture in video by gated recurrent unit, and the deep learning model features of RGB image and depth image are fused to recognize gesture.The experiments on ISOGD datasets show that this gesture recognition algorithm can effectively improve the accuracy of video gesture recognition.
Keywords:Gesture recognition  3-D dense convolution neural network  Gated recurrent unit
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号