首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
一种基于集成学习的多元时间序列预测方法
作者姓名:
左亚尧
王铭锋
洪嘉伟
马铎
作者单位:
1. 广东工业大学计算机学院;2. 西安工业大学电子信息工程学院
基金项目:
广东省自然科学基金项目(2018A030313934)资助;;广东省科技计划项目(19ZK0094)资助;
摘 要:
多元时间序列包含丰富的变量,且变量间存在着相关性,相互影响,可能会降低某一变量的预测精度.为此,本文提出了一种基于RNN和CNN的混合模型.模型利用互信息法进行特征选择,通过融合CNN的抽象特征提取以及GRU的时序信息提取来预测未来7个单位时刻的数据.实验表明,模型的预测效果优于LSTM等模型.此外,为了检验所构建的模型的泛用性,在PM2.5数据集和SML2010数据集上进行了对比测试,同样证明了模型的优越性.
关 键 词:
多元时间序列
集成学习
短期预测
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号