摘 要: | ![]() A recent methodology to model biochem- ical systems is here presented. It is based on a concep- tual framework rooted in membrane computing and de- veloped with concepts typical of discrete dynamical sys- tems. According to our approach, from data observed at suitable macroscopic temporal scales, one can deduce, by means of algebraic and algorithmic procedures, a dis- crete model (called Metabolic P system) which accounts for the experimental data, and opens the possibility to under- stand the systemic logic of the investigated phenomenon. The procedures of such a method have been implemented within a computational platform, a Java software called MetaPlab, processing data and simulating behaviors of metabolic models. In the paper, we briefly describe the theory underlying the modeling of biochemical systems by Metabolic P systems, along with its development stages and the related extensive literature.
|