首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘法的Bertrand齿廓面测量点回归
引用本文:吴宏基,刘胜利,刘健. 基于最小二乘法的Bertrand齿廓面测量点回归[J]. 中国机械工程, 2005, 16(8): 728-730
作者姓名:吴宏基  刘胜利  刘健
作者单位:大连理工大学,大连,116024
基金项目:国家自然科学基金资助项目(50275017)
摘    要:基于最小二乘法并结合微分几何理论,针对斜航式法向圆弧锥齿轮的特点,提出了一种适合Bertrand齿廓面检测时测量点的回归法。导出了被测齿廓与设计齿廓的联系,建立了Bertrand齿廓面的回归处理模型。仿真结果表明,该模型具有理论的正确性与实际可行性。

关 键 词:最小二乘法 三坐标测量机 Bertrand齿廓面 斜航式法向圆弧锥齿轮
文章编号:1004-132X(2005)08-0728-03

Regression of Measured Points of Bertrand Tooth Surface Based on Least Square Method
Wu Hongji,Liu Shengli,Liu Jiang. Regression of Measured Points of Bertrand Tooth Surface Based on Least Square Method[J]. China Mechanical Engineering, 2005, 16(8): 728-730
Authors:Wu Hongji  Liu Shengli  Liu Jiang
Affiliation:Wu Hongji Liu Shengli Liu Jiang Dalian University of Technology,Dalian,116024
Abstract:A new measured points regressive method ,which adapts to measure the Bertrand surface,was presented. It is based on the least square method and the characteristics of loxodrome normal circular arc spiral bevel gear and combined with the theory of differential geometry. The paper derives relations of the measured tooth profile and that of the design. A mathematical model was established for the Bertrand tooth surface regression. By simulation, it proves that the models are right and pratical.
Keywords:least square method  CMM  Bertrand tooth surface  loxodrome normal circular arc spiral bevel gear
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号