首页 | 本学科首页   官方微博 | 高级检索  
     

基于ECA-SSD模型的汽车零件缺陷检测
作者姓名:金文倩  彭露露  朱媛媛  王笑梅
作者单位:上海师范大学计算机科学与技术系,上海 200234
基金项目:上海市自然科学基金资助项目
摘    要:汽车零件对汽车外观、性能以及安全性都有重大影响。由于汽车零件数量大、体积小、对精度要求高,因此对零件检测的精度和速度都有一定的要求。本文利用图像处理技术,以SSD模型为基础,将其中的VGG模块用深度可分离卷积和线性瓶颈倒残差结构替换,并引入避免降维的局部跨通道交互有效的注意力机制ECA模块,在减少模型参数运算量的同时,适当增加通道以提高模型精度,并将注意力放在图像目标上,忽略背景带来的干扰,实现快速又准确的汽车零件缺陷检测。利用本文模型对上汽提供的汽车零件外壁缺陷进行检测,实验结果表明,模型大小仅为15.9 MB,mAP为94.64%,检测每张图片时间为0.013 s,满足汽车工业上的速度和精度的需求。对比性研究表明,本文模型检测精度和速度以及大小较其他目标检测算法VGG-SSD、MobileNetv2-SSD、YOLO v3等有一定的提高和改善。

关 键 词:有效通道注意力(ECA)  深度可分离卷积  倒残差  缺陷检测  SSD(Single Shot Multibox Detector)
收稿时间:2022-04-29
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号