首页 | 本学科首页   官方微博 | 高级检索  
     


Robust Adaptive Identification of Nonlinear System Using Neural Network
Authors:Q. Song  W.J. Hu  Y.C. Soh
Abstract:It is well known that disturbance can cause divergence of neural networks in the identification of nonlinear systems. Sufficient conditions using so‐called modified algorithms are available to provide guaranteed convergence for adaptive system. They are dead zone scheme, adaptive law modification, and σ‐modification. These schemes normally require knowledge of the upper bound of the disturbance. In this paper, a robust weighttuning algorithm is used to train the multi‐layered neural network with an adaptive dead zone scheme. The proposed robust adaptive algorithm does not require knowledge of either the upper bound of the disturbance or the bound on the norm of the estimate parameter. A complete convergence proof is provided based on Lyapunov theorem to deal with the nonlinear system. Simulation results are presented to show good perfor‐mance of the algorithm.
Keywords:Neural networks  adaptive deadzone  nonlinear function identification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号