首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波重构的控制图并发异常模式识别研究
引用本文:侯世旺,同淑荣. 基于小波重构的控制图并发异常模式识别研究[J]. 计算机工程与应用, 2008, 44(28): 18-21. DOI: 10.3778/j.issn.1002-8331.2008.28.006
作者姓名:侯世旺  同淑荣
作者单位:西北工业大学管理学院,西安,710072;西北工业大学管理学院,西安,710072
摘    要:对于统计质量控制过程中的复杂过程而言,多种异常的并发现象比较普遍,而常规的基于规则的方法以及人工神经网络(ANNs)技术均针对单一异常模式的识别,难以完成对并发异常模式的识别任务。提出一种混合方法,将小波分析与ANNs相结合,通过小波分解重构将并发异常模式分解为基本的异常模式组合,无须用并发异常样本训练ANNs,实现对并发异常模式的有效识别。

关 键 词:小波分析  神经网络  并发异常模式
收稿时间:2008-04-21
修稿时间:2008-7-9 

Wavelet-reconstruction based recognition method for control charts concurrent abnormal patterns
HOU Shi-wang,TONG Shu-rong. Wavelet-reconstruction based recognition method for control charts concurrent abnormal patterns[J]. Computer Engineering and Applications, 2008, 44(28): 18-21. DOI: 10.3778/j.issn.1002-8331.2008.28.006
Authors:HOU Shi-wang  TONG Shu-rong
Affiliation:School of Management,Northwestern Polytechnical University,Xi’an 710072,China
Abstract:For the complex process of Statistical Quality Control(SQC),the concurrent of various abnormity is ordinary.However,the traditional rule-based methods and Artificial Neural Networks(ANNs) technique can only recognize the single pattern.In this paper,a hybrid method is developed through the combination of wavelet analysis and ANNs.By wavelet decomposition and reconstruction,the concurrent abnormal patterns can be decomposed into different basic patterns.Without being trained by concurrent abnormal patterns samples,the ANNs will effectively recognize the concurrent patterns by taking the decomposed patterns as input.
Keywords:wavelet analysis  neural networks  concurrent abnormal patterns
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号