首页 | 本学科首页   官方微博 | 高级检索  
     


MO‐Co@N‐Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn–Air Battery
Authors:Biaohua Chen  Xiaobo He  Fengxiang Yin  Hao Wang  Di‐Jia Liu  Ruixing Shi  Jinnan Chen  Hongwei Yin
Affiliation:1. State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing, P. R. China;2. Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, P. R. China;3. Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, P. R. China;4. Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, USA
Abstract:A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal–organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co–Nx and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn‐based and Co‐based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn‐NC‐700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn‐NC‐700 also exhibits the prominent Zn–air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.
Keywords:catalysis  metal–  organic frameworks  oxygen evolution reactions  oxygen reduction reactions  zinc–  air batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号