首页 | 本学科首页   官方微博 | 高级检索  
     


Mixed Covering of Trees and the Augmentation Problem with Odd Diameter Constraints
Authors:Victor Chepoi  Bertrand Estellon  Karim Nouioua  Yann Vaxes
Affiliation:(1) Laboratoire d'Informatique Fondamentale de Marseille, Faculte des Sciences de Luminy, Universite de la Mediterranee, F-13288 Marseille Cedex 9, France
Abstract:In this paper we present a polynomial time algorithm for solving the problem of partial covering of trees with n1 balls of radius R1 and n2 balls of radius R2 (R1 < R2) to maximize the total number of covered vertices. The solutions provided by this algorithm in the particular case R1 = R – 1, R2 = R can be used to obtain for any integer δ > 0 a factor (2+1/δ) approximation algorithm for solving the following augmentation problem with odd diameter constraints D = 2R + 1: Given a tree T, add a minimum number of new edges such that the augmented graph has diameter ≤ D. The previous approximation algorithm of Ishii, Yamamoto, and Nagamochi (2003) has factor 8.
Keywords:Partial covering  Diameter  Augmentation problem  Dynamical programming  Approximation algorithms
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号