首页 | 本学科首页   官方微博 | 高级检索  
     


Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators
Authors:W. Hackbusch  B. N. Khoromskij
Affiliation:(1) Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstr. 22-26, 04103 Leipzig, Germany
Abstract:This article is the second part continuing Part I [16]. We apply the MediaObjects/s00607-005-0145-zflb1.gif -matrix techniques combined with the Kronecker tensor-product approximation to represent integral operators as well as certain functions F(A) of a discrete elliptic operator A in a hypercube (0,1) d ∈ ℝ d in the case of a high spatial dimension d. We focus on the approximation of the operator-valued functions A σ , σ>0, and sign (A) for a class of finite difference discretisations A ∈ ℝ N × N . The asymptotic complexity of our data-sparse representations can be estimated by MediaObjects/s00607-005-0145-zflb2.gif (n p log q n), p = 1, 2, with q independent of d, where n=N 1/ d is the dimension of the discrete problem in one space direction.
Keywords:65F50  65F30  46B28  47A80
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号