首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO-SVM的催化裂化装置故障诊断研究
引用本文:肖炎良,侯立刚,张勇,周翔,段艳君. 基于PSO-SVM的催化裂化装置故障诊断研究[J]. 化工自动化及仪表, 2010, 37(10): 55-57
作者姓名:肖炎良  侯立刚  张勇  周翔  段艳君
作者单位:辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001
基金项目:国家"863"计划资助项目
摘    要:提出基于粒子群优化算法和支持向量机的催化裂化装置反应再生子系统故障诊断方法。利用粒子群优化算法的全局搜索特性,实现支持向量机的参数优化算法。根据支持向量机算法构建了催化裂化装置反应再生子系统故障诊断模型。结果显示,该诊断方法准确率高,具有较高的使用价值。

关 键 词:故障诊断  支持向量机  粒子群优化算法  催化裂化

Research on Fault Diagnosis in Reactor-Regenerator System of FCCU Based on PSO-SVM
XIAO Yan-liang,HOU Li-gang,ZHANG Yong,ZHOU Xiang,DUAN Yan-jun. Research on Fault Diagnosis in Reactor-Regenerator System of FCCU Based on PSO-SVM[J]. Control and Instruments In Chemical Industry, 2010, 37(10): 55-57
Authors:XIAO Yan-liang  HOU Li-gang  ZHANG Yong  ZHOU Xiang  DUAN Yan-jun
Affiliation:(School of Information and Control Engineering,Liaoning Shihua University,Fushun 113001,China)
Abstract:A fault diagnosis method in reactor-regenerator system of fluidized catalytic cracking unit(FCCU) based on support vector machine(SVM) and particle swarm optimization(PSO) was proposed.The algorithm was implemented for optimization selection for parameter of SVM classifier utilizing global searching property of PSO.A fault diagnosis model in reactor-regenerator system of FCCU based on SVM algorithm was constructed.The results show this fault diagnosis method can achieve high diagnostic accuracy,and this method is practical.
Keywords:fault diagnosis  SVM  PSO  catalytic cracking
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号