首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of secondary carbides precipitation and transformation on the secondary hardening of laser melted high chromium steel
Authors:Yong Wang  Mei Yan Li  Bin Han  Tao Han  Yi Yuan Cheng
Affiliation:(1) College of Electromechanical Engineering, China University of Petroleum, 271 Bei’er Road, Dongying, 257061, Shandong, China;
Abstract:The influence of secondary carbides precipitation and transformation on the secondary hardening of laser melted high chromium steels was analyzed by means of scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The microstructure of laser melted high chromium steel is composed of austenite with supersaturated carbon and alloy elements and granular interdendritic carbides of type M23C6. Secondary hardening of the laser melted layer begins at 450 °C after tempering, and the hardness reaches a peak of 672HV at 560 °C and then decreases gradually. After tempering at 560 °C, a large amount of lamellar martensite was formed in the laser melted layer with a small quantity of thin lamellar M3C cementite due to the martensitic decomposition. The stripy carbides precipitating at the grain boundaries were determined to be complex hexagonal M7C3 carbides and face centered cubic M23C6 carbides. In addition, the granular M23C6 carbides and fine rod-like shaped M7C3 carbides coexisted within the dendrites. As a result, the combined effects of martensitic transformation, ultrafine carbide precipitations, and dislocation strengthening result in the secondary hardening of the laser melted layer when the samples were tempered at 560 °C.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号