首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of interfacial reaction for the Sn-Pb solder bump with Ni/Cu under-bump metallization in flip-chip technology
Authors:Guh-Yaw Jang  Chien-Sheng Huang  Li-Yin Hsiao  Jenq-Gong Duh  Hideyuki Takahashi
Affiliation:(1) Department of Materials Science and Engineering, National Tsing Hua University, 300 Hsinchu, Taiwan;(2) Application & Research Center, JEOL Ltd., 196-8558 Tokyo, Japan
Abstract:Nickel-based under-bump metallization (UBM) has been widely used in flip-chip technology (FCT) because of its slow reaction rate with Sn. In this study, solder joints after reflows were employed to investigate the mechanism of interfacial reaction between the Ni/Cu UBM and eutectic Sn-Pb solder. After deliberate quantitative analysis with an electron probe microanalyzer (EPMA), the effect of Cu content in solders near the interface of the solder/intermetallic compound (IMC) on the interfacial reaction could be probed. After one reflow, only one layered (Ni1−x,Cux)3Sn4 with homogeneous composition was found between the solder bump and UBM. However, after multiple reflows, another type of IMC, (Cu1−y,Niy)6Sn5, formed between the solder and (Ni1−x,Cux)3Sn4. It was observed that if the concentration of Cu in the solders near the solder/IMC interface was higher than 0.6 wt.%, the (Ni1−x,Cux)3Sn4 IMC would transform into the (Cu1−y,Niy)6Sn5 IMC. The Cu contents in (Ni1−x,Cux)3Sn4 were altered and not uniformly distributed anymore. With the aid of microstructure evolution, quantitative analysis, elemental distribution by x-ray color mapping, and related phase equilibrium of Sn-Ni-Cu, the reaction mechanism of interfacial phase transformation between the Sn-Pb solder and Ni/Cu UBM was proposed.
Keywords:Flip chip  phase transformation  diffusion  intermetallic compound  under-bump metallization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号