首页 | 本学科首页   官方微博 | 高级检索  
     


Error compensation in machine tools: a neural network approach
Authors:John C. Ziegert  Prashant Kalle
Affiliation:(1) Department of Mechanical Engineering, University of Florida, 32611 Gainesville, FL, USA
Abstract:For a non-idealized machine tool, each point in the workspace is associated with a tool point positioning error vector. If this error map can be determined, then it is possible to substantially improve the positioning performance of the machine by introducing suitable compensation into the control loop. This paper explores the possibility of using an artifical neural network (ANN) to compute this mapping. The training set for the ANN is obtained by mounting a physical artifact whose dimensions are precisely known in the machine's workspace. The machine, equipped with a touch trigger probe, lsquomeasuresrsquo the positions of features on the artifact. The difference between the machine reading and the known dimension is the machine error at that point in the workspace. Using standard modeling techniques, the kinematic error model for a CNC turning center was developed. This model was parameterized by measurement of the parametric error functions using a laser interferometer, electronic levels and a precision square. The kinematic model was then used to simulate the artifact-measuring process and develop the ANN training set. The effect of changing artifact geometry was explored and a machining operation was simulated using the ANN output to provide compensation. The results show that the ANN is capable of learning the error map of a real machine, and that ANN-based compensation can significantly reduce part-dimensional errors.
Keywords:Machine tools  error compensation  neural network
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号