首页 | 本学科首页   官方微博 | 高级检索  
     

高温铜渣颗粒流换热CFD模拟研究
引用本文:阎新志,杨国强,武海军,朱晓磊.高温铜渣颗粒流换热CFD模拟研究[J].矿冶,2023,32(6):82-87.
作者姓名:阎新志  杨国强  武海军  朱晓磊
作者单位:赤峰白音华物流有限公司,赤峰白音华物流有限公司,赤峰白音华物流有限公司,上海发电设备成套设计研究院有限责任公司
摘    要:采用CFD模拟技术研究了铜渣颗粒流余热回收颗粒塔工艺内冷却段气固传热性能和料层阻力特性,分析了颗粒塔内气固温度、压力、换热区间以及换热时间等工艺参数的变化规律。结果表明,冷却空气进入颗粒塔穿过球形铜渣时发生快速强制对流换热过程中,颗粒塔内压降梯度变化大于温度梯度变化;气速越大,换热区高度越小,10 m/s气流速度对应换热区高度仅为0.85 m, 4 m/s气流速度对应换热区高度为1.4 m;换热运行时间随气流速度增大而减小,10 m/s气速对应换热运行时间最短仅为30 s, 4 m/s气流速度对应换热运行时间最长为135 s;增大气流速度有利于强化颗粒塔内气固的换热效果,提高换热量,10 m/s气流速度对应的换热量最大为7.0×107 W。

关 键 词:铜渣  颗粒流换热  CFD模拟  余热回收
收稿时间:2023/7/4 0:00:00
修稿时间:2023/8/7 0:00:00

CFD simulation of flow heat transfer of high temperature copper slag
yanxinzhi,yangguoqiang,wuhanjun and zhuxiaolei.CFD simulation of flow heat transfer of high temperature copper slag[J].Mining & Metallurgy,2023,32(6):82-87.
Authors:yanxinzhi  yangguoqiang  wuhanjun and zhuxiaolei
Affiliation:Chifeng Baiyinhua Logistics Co., LTD,Chifeng Baiyinhua Logistics Co., LTD,Chifeng Baiyinhua Logistics Co., LTD,Shanghai Power Equipment Research Institute Co., LTD,
Abstract:The gas-solid heat transfer performance and the resistance characteristics of the material layer in the cooling section of the particle column process of copper slag particle flow waste heat recovery were studied by CFD simulation technology, and the variation law of the process parameters such as gas-solid temperature, pressure, heat transfer zone and heat transfer time in the particle column was analyzed. The results show that the pressure drop gradient is larger than the temperature gradient during the rapid forced convection heat transfer process when the cooling air enters the particle column and passes through the spherical copper slag. The higher the gas velocity, the smaller the height of the heat exchange zone, 10 m/s gas velocity corresponds to the height of the heat exchange zone is only 0.85 m, 4 m/s gas velocity corresponds to the height of the heat exchange zone is 1.4 m. The running time of heat transfer decreases with the increase of gas velocity. The shortest running time of heat transfer at 10 m/s corresponds to 30 s, and the longest running time of heat transfer at 4 m/s corresponds to 135 s. Increasing the atmospheric velocity is conducive to strengthening the gas-solid heat transfer effect in the particle tower and improving the heat transfer. The maximum heat transfer corresponding to 10 m/s gas velocity is 70000000 W.
Keywords:Copper  slag  Particle  flow heat  transfer  CFD  simulation  Waste  heat recovery
点击此处可从《矿冶》浏览原始摘要信息
点击此处可从《矿冶》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号