首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的应用于噪声数据中的KNN算法
引用本文:倪艾玲. 一种改进的应用于噪声数据中的KNN算法[J]. 计算机与现代化, 2008, 0(7): 75-78
作者姓名:倪艾玲
作者单位:安徽工业大学计算机学院,安徽,马鞍山,243002
摘    要:
基于实例的KNN算法不可避免地要依赖于数据的质量,但原始数据含有噪声,因而KNN算法的结果势必会因为数据中的噪声而受到严重的影响。事实上,大多噪声都服从一定的模型,而且模型一般是已知的。充分利用数据中的噪声模型,以减小噪声对KNN算法结果的影响。通过实验结果表明该方法是有效的。

关 键 词:分类  K-近邻算法  噪声模型

An Improvement KNN Algorithm To Deal with Noisy Data
NI Ai-ling. An Improvement KNN Algorithm To Deal with Noisy Data[J]. Computer and Modernization, 2008, 0(7): 75-78
Authors:NI Ai-ling
Affiliation:NI Ai-ling (School of Computer Science, Anhui University of Technology, Maanshan 243002, China)
Abstract:
Case-based KNN algorithm inevitably has to rely on the quality of the data,but the original data is noisy.The result of KNN algorithm will inevitably be severely affected because of the noise data.In fact,most noise is subordinate to a certain model,and the model is generally known.Taking full advantage of the noise model in the data is to reduce the bad effect of noise on KNN algorithm results.Experimental results show that the method is effective.
Keywords:classification  KNN algorithm  noise
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号