首页 | 本学科首页   官方微博 | 高级检索  
     

三级倒立摆的加权变量模糊神经网络控制
引用本文:姚凌虹,尹鑫鹏,张重阳. 三级倒立摆的加权变量模糊神经网络控制[J]. 自动化技术与应用, 2008, 27(11): 7-10
作者姓名:姚凌虹  尹鑫鹏  张重阳
作者单位:海军航空工程学院青岛分院,山东,青岛,266041;北京热力集团,北京,100071;天津石化机械研究所,天津,300271
摘    要:为了提高三级倒立摆系统控制的响应速度和稳定性,在设计Mamdani型摸糊推理规则控制器控制倒立摆系统稳定的基础上,设计了一种更有效率的基于Sugeno型模糊推理规则的模糊神经网络控制器。该控制器使用BP神经网络和最小二乘法的混合算法进行参数训练,能够准确归纳输入输出量的模糊隶属度函数和模糊逻辑规则。通过与Mamdani型控制器的仿真对比,表明该Sugeno型模糊神经网络控制器对三级倒立摆系统的控制具有良好的稳定性和快速性,以及较高的控制精度。

关 键 词:三级倒立摆  模糊控制  模糊神经网络控制

Fuzzy Neural Network Control of a Triple Inverted-Pendulum Based on Weighted Variables
YAO Ling-hong,YIN Xin-peng,ZHANG Chong-yang. Fuzzy Neural Network Control of a Triple Inverted-Pendulum Based on Weighted Variables[J]. Techniques of Automation and Applications, 2008, 27(11): 7-10
Authors:YAO Ling-hong  YIN Xin-peng  ZHANG Chong-yang
Affiliation:YAO Ling-hong, YIN Xin-peng, ZHANG Chong-yang ( 1.Qingdao Branch of Naval Aeronautical Engineering Institute, Qingdao, 266041, China; 2.Beijing District Heating Group, Beijing, 100071 China; 3.Tianjin Petrochemical Mechanical Institute, Tianjin, 300271 China)
Abstract:In order to improve the response and stability of a Triple Inverted-Pendulum system, a Sugeno fuzzy neural network controller is proposed. A BP network with Least Square Method is used to train the Sugeno fuzzy neural network for theadjustment of the membership functions and fuzzy logic rules of the input and output variables. The results of simulation of the Sugeno fuzzy neural network controller, as compared with the Mamdani fuzzy controller are also given.
Keywords:triple inverted-pendulum  fuzzy control  fuzzy neural network control
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号