首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析和偏最小二乘回归的烟煤水分近红外检测
引用本文:马公喆,杨晓丽,汪文超,陈云秀. 基于主成分分析和偏最小二乘回归的烟煤水分近红外检测[J]. 云南化工, 2015, 0(1): 45-47
作者姓名:马公喆  杨晓丽  汪文超  陈云秀
作者单位:曲靖师范学院化学化工学院
基金项目:云南省省级大学生创新创业训练计划项目(编号:201310664003)
摘    要:基于近红外光谱技术对烟煤水分分析的快速、无损性。采集了100个烟煤样品,分成验证集和预测集,验证集85个,预测集15个。利用主成分分析对烟煤的近红外光谱数据进行压缩,然后以主成分为输入,采用偏最小二乘回归建立烟煤水分预测模型。烟煤水分平均绝对相对误差为0.0728,表明该方法用于预测烟煤水分含量是可行的。

关 键 词:近红外  烟煤  水分  检测  主成分分析  偏最小二乘回归

NIR Detecting of Bituminous Coal Moisture Based on Main Components Analysis and Partial Least Squares Regression Analysis
MA Gong-zhe;YANG Xiao-li;WANG Wen-chao;CHEN Yun-xiu. NIR Detecting of Bituminous Coal Moisture Based on Main Components Analysis and Partial Least Squares Regression Analysis[J]. Yunnan Chemical Technology, 2015, 0(1): 45-47
Authors:MA Gong-zhe  YANG Xiao-li  WANG Wen-chao  CHEN Yun-xiu
Affiliation:MA Gong-zhe;YANG Xiao-li;WANG Wen-chao;CHEN Yun-xiu;Qujing Normal College,Department of Chemistry and Chemical Engineering;
Abstract:Based on Near Infrared Spectroscopy for bituminous coal moisture detection with rapid,non- destructive characters. the collected 100 samples of bituminous coal were divided into two sets,one is validation set and another is prediction set,85 for validation set 15 for the prediction set. Analysis of bituminous coal the near infrared spectroscopy data were compressed via the main components' analysis,and then the main ingredients were entered,using partial least squares regression,the predict model of bituminous coal moisture was established. Bituminous coal moisture mean absolute relative error was 0. 0728,indicating that the method for predicting the moisture content of the bituminous coal was feasible.
Keywords:near infrared spectroscopy  moisture  main component analysis  bituminous partial least squares regression
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号