首页 | 本学科首页   官方微博 | 高级检索  
     


Learning to Parse Natural Language with Maximum Entropy Models
Authors:Ratnaparkhi  Adwait
Affiliation:(1) Department of Computer and Information Science, University of Pennsylvania, 200 South 33rd Street, Philadelphia, PA, 19104-6389
Abstract:This paper presents a machine learning system for parsing natural language that learns from manually parsed example sentences, and parses unseen data at state-of-the-art accuracies. Its machine learning technology, based on the maximum entropy framework, is highly reusable and not specific to the parsing problem, while the linguistic hints that it uses to learn can be specified concisely. It therefore requires a minimal amount of human effort and linguistic knowledge for its construction. In practice, the running time of the parser on a test sentence is linear with respect to the sentence length. We also demonstrate that the parser can train from other domains without modification to the modeling framework or the linguistic hints it uses to learn. Furthermore, this paper shows that research into rescoring the top 20 parses returned by the parser might yield accuracies dramatically higher than the state-of-the-art.
Keywords:maximum entropy models  natural language processing  parsing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号