首页 | 本学科首页   官方微博 | 高级检索  
     

引力搜索算法中粒子记忆性改进的研究
引用本文:李春龙,戴娟,潘丰. 引力搜索算法中粒子记忆性改进的研究[J]. 计算机应用, 2012, 32(10): 2732-2735. DOI: 10.3724/SP.J.1087.2012.02732
作者姓名:李春龙  戴娟  潘丰
作者单位:江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
基金项目:国家863计划项目(2009AA05Z203);江苏高校优势学科建设工程资助项目(PAPD)
摘    要:针对引力搜索算法(GSA)对一些复杂问题的搜索精度不高的问题,特别是高维函数优化性能不佳、优化过程容易出现早熟的现象,因此考虑将粒子群优化(PSO)算法中关于局部最优解和全局最优解的概念引入引力搜索算法中,对引力搜索算法中粒子的记忆性进行改进,这样使得粒子的进化不仅受空间中其他粒子的影响,还受到自身记忆的约束,以此来提高算法的搜索能力。通过对选用的10个基准函数测试,证明了该方法的有效性。

关 键 词:引力搜索算法  粒子群优化算法  记忆性  数值函数优化  群智能  
收稿时间:2012-04-17
修稿时间:2012-05-25

Analysis on improvement of particle memory in gravitational search algorithm
LI Chun-long,DAI Juan,PAN Feng. Analysis on improvement of particle memory in gravitational search algorithm[J]. Journal of Computer Applications, 2012, 32(10): 2732-2735. DOI: 10.3724/SP.J.1087.2012.02732
Authors:LI Chun-long  DAI Juan  PAN Feng
Affiliation:Key Laboratory of Advanced Process Control for Light Industry Ministry of Education, Jiangnan University, Wuxi Jiangsu 214122, China
Abstract:As the gravitational search algorithm plays bad performance in search accuracy of the complex issues,especially the poor search quality of standard Gravitational Search Algorithm(GSA) in the high dimensional function optimization.It is easy to get into premature convergence in the optimization process.Therefore,the idea of the particle swarm optimization algorithm was introduced to gravitational search algorithm,which was used to improve the memory of particles.The particle evolution is not only influenced by other particles in the space,but also by its own memory constraint,which is used to improve the ability of exploitation.The test of the 10 benchmark functions confirms the validity of the method.
Keywords:Gravitational Search Algorithm(GSA)  Particle Swarm Optimization(PSO) algorithm  memory  numerical function optimization  swarm intelligence
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号