摘 要: | 在推荐系统中,用户对物品的兴趣是动态变化的,会受用户自身历史行为、朋友历史行为甚至短时热点等多方面因素影响.而如何在推荐系统中对用户的时序兴趣进行描述并提取有效信息,一直以来是推荐算法的一大挑战之一.本文在图神经网络(GNN)推荐算法的基础上,提出一种基于注意力门控循环单元(Attention-GRU)的改进图网络算法,对用户、物品的交互时序历史进行特征建模,于此同时结合社交网络将此时序特征在用户、物品之间传播.算法在Ciao与Epionions数据集上进行了验证,并与其他相关工作进行对比,证明了该模型有效地提取了用户、物品的时序特征,提升了推荐系统的有效性.
|