首页 | 本学科首页   官方微博 | 高级检索  
     


Sequential stability and optimization of large scale decentralized systems
Authors:EJ Davison  W Gesing
Affiliation:2. Department of Electrical Engineering, University of Toronto, Toronto, Ontario, Canada
Abstract:The notion of sequential stability in the synthesis of decentralized control for large scale systems is introduced in this paper. This notion is concerned with the property of a synthesis technique which allows the decentralized controllers of a large scale system to be connected to the systems one at a time (in a sequential way) such that the controlled system remains stable at all times. The motivation for introducing this constraint is that in practical terms, it is generally impossible to connect all decentralized controllers to a system simultaneously (due to the difficulties of communication etc.). A practical design procedure for the synthesis of a decentralized robust regulator for the servomechanism problem, based on a sequential approach to system design, is then given. The design procedure proceeds in two stages: (1) decentralized controllers are initially connected to the system in a sequential way to guarantee stability; (2) the parameters of the decentralized controllers are then sequentially adjusted, in a way to guarantee stability, so as to optimize a given performance index for the system. Applications of the above procedure are then made to the synthesis of centralized multivariable controllers and to the decentralized robust control of unknown systems.A simple example is given to illustrate the design synthesis.
Keywords:Decentralized control  large-scale systems  servomechanisms  optimization  multivariable control systems  stability  sequential stability  decentralized systems  computational methods  computer-aided design
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号